Immunology and Biotherapies
37.9K views | +1 today
Follow
Immunology and Biotherapies
Page Ressources et Actualités du DIU immunologie et biothérapies
Your new post is loading...
Your new post is loading...
Rescooped by Gilbert C FAURE from Cancer Vaccines Collection
Scoop.it!

Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients

Abstract

Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4–specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14++CD16−monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68+/CD163+ macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti–CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients.


Via Krishan Maggon
Krishan Maggon 's curator insight, May 10, 2015 1:55 PM

PNAS

Emanuela Romano, doi: 10.1073/pnas.1417320112

 

Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patientsEmanuela Romanoa,b,c,1, Monika Kusio-Kobialkab, Periklis G. Foukasc,d, Petra Baumgaertnerc,Christiane Meyerc, Pierluigi Ballabenie, Olivier Michielina,c, Benjamin Weidef, Pedro Romeroc, andDaniel E. Speiserc

Author Affiliations

Edited by Ira Mellman, Genentech, Inc., South San Francisco, CA, and approved March 30, 2015 (received for review September 9, 2014)

Krishan Maggon 's curator insight, May 12, 2015 3:05 AM

PNAS

Emanuela Romano, doi: 10.1073/pnas.1417320112

 

Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patientsEmanuela Romanoa,b,c,1, Monika Kusio-Kobialkab, Periklis G. Foukasc,d, Petra Baumgaertnerc,Christiane Meyerc, Pierluigi Ballabenie, Olivier Michielina,c, Benjamin Weidef, Pedro Romeroc, andDaniel E. Speiserc

Author Affiliations

Edited by Ira Mellman, Genentech, Inc., South San Francisco, CA, and approved March 30, 2015 (received for review September 9, 2014)

Rescooped by Gilbert C FAURE from Cancer Immunotherapy Review and Collection
Scoop.it!

Overall Survival and Long-Term Safety of Nivolumab (Anti–Programmed Death 1 Antibody, BMS-936558, ONO-4538) in Patients With Previously Treated Advanced Non–Small-Cell Lung Cancer

Overall Survival and Long-Term Safety of Nivolumab (Anti–Programmed Death 1 Antibody, BMS-936558, ONO-4538) in Patients With Previously Treated Advanced Non–Small-Cell Lung Cancer | Immunology and Biotherapies | Scoop.it
"OS & Long-Term Safety of #Nivolumab in Patients With Previously Treated Advanced #NSCLC" JCO http://t.co/TjxJ8tP1Sr

 

Purpose Programmed death 1 is an immune checkpoint that suppresses antitumor immunity. Nivolumab, a fully human immunoglobulin G4 programmed death 1 immune checkpoint inhibitor antibody, was active and generally well tolerated in patients with advanced solid tumors treated in a phase I trial with expansion cohorts. We report overall survival (OS), response durability, and long-term safety in patients with non–small-cell lung cancer (NSCLC) receiving nivolumab in this trial.

Patients and Methods Patients (N = 129) with heavily pretreated advanced NSCLC received nivolumab 1, 3, or 10 mg/kg intravenously once every 2 weeks in 8-week cycles for up to 96 weeks. Tumor burden was assessed by RECIST (version 1.0) after each cycle.

Results Median OS across doses was 9.9 months; 1-, 2-, and 3-year OS rates were 42%, 24%, and 18%, respectively, across doses and 56%, 42%, and 27%, respectively, at the 3-mg/kg dose (n = 37) chosen for further clinical development. Among 22 patients (17%) with objective responses, estimated median response duration was 17.0 months. An additional six patients (5%) had unconventional immune-pattern responses. Response rates were similar in squamous and nonsquamous NSCLC. Eighteen responding patients discontinued nivolumab for reasons other than progressive disease; nine (50%) of those had responses lasting > 9 months after their last dose. Grade 3 to 4 treatment-related adverse events occurred in 14% of patients. Three treatment-related deaths (2% of patients) occurred, each associated with pneumonitis.

Conclusion Nivolumab monotherapy produced durable responses and encouraging survival rates in patients with heavily pretreated NSCLC. Randomized clinical trials with nivolumab in advanced NSCLC are ongoing.


Via Krishan Maggon
Krishan Maggon 's curator insight, April 21, 2015 2:09 AM

 

Published online before printApril 20, 2015, doi:10.1200/JCO.2014.58.3708JCO April 20, 2015JCO.2014.58.3708

 

Overall Survival and Long-Term Safety of Nivolumab (Anti–Programmed Death 1 Antibody, BMS-936558, ONO-4538) in Patients With Previously Treated Advanced Non–Small-Cell Lung CancerScott N. Gettinger⇑, Leora Horn, Leena Gandhi, David R. Spigel,Scott J. Antonia, Naiyer A. Rizvi, John D. Powderly, Rebecca S. Heist,Richard D. Carvajal, David M. Jackman, Lecia V. Sequist, David C. Smith,Philip Leming, David P. Carbone, Mary C. Pinder-Schenck,Suzanne L. Topalian, F. Stephen Hodi, Jeffrey A. Sosman, Mario Sznol,David F. McDermott, Drew M. Pardoll, Vindira Sankar, Christoph M. Ahlers,Mark Salvati, Jon M. Wigginton, Matthew D. Hellmann, Georgia D. Kollia,Ashok K. Gupta and Julie R. Brahmer

+Author Affiliations

Scott N. Gettinger and Mario Sznol, Yale Cancer Center, New Haven, CT; Leora Horn, David P. Carbone, and Jeffrey A. Sosman, Vanderbilt University Medical Center; David R. Spigel, Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; Leena Gandhi, David M. Jackman, and F. Stephen Hodi, Dana-Farber Cancer Institute; Rebecca S. Heist and Lecia V. Sequist, Massachusetts General Hospital Cancer Center; David F. McDermott, Beth Israel Deaconess Medical Center, Boston, MA; Scott J. Antonia and Mary C. Pinder-Schenck, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; Naiyer A. Rizvi, Richard D. Carvajal, and Matthew D. Hellmann, Memorial Sloan Kettering Cancer Center, New York, NY; John D. Powderly, Carolina BioOncology Institute, Huntersville, NC; David C. Smith, University of Michigan, Ann Arbor, MI; Philip Leming, Christ Hospital Cancer Center, Cincinnati, OH; Suzanne L. Topalian, Drew M. Pardoll, and Julie R. Brahmer, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD; and Vindira Sankar, Christoph M. Ahlers, Mark Salvati, Jon M. Wigginton, Georgia D. Kollia, and Ashok K. Gupta, Bristol-Myers Squibb, Princeton, NJ.Corresponding author: Scott N. Gettinger, MD, Yale Cancer Center, 333 Cedar St, FMP127, New Haven, CT 06520; e-mail: scott.gettinger@yale.edu.