The D14 and KAI2 Orthologs of Gymnosperms Sense Strigolactones and KL Mimics, Respectively, and the Signals Are Transduced to Control Downstream Genes | Plant hormones (Literature sources on phytohormones and plant signalling) | Scoop.it
Authors: Kyoichi Kodama, Xiaonan Xie, Junko Kyozuka. 

Plant and Cell Physiology (2023)

Abstract: "Strigolactones (SLs), lactone-containing carotenoid derivatives, function as signaling molecules in the rhizosphere, inducing symbiosis with arbuscular mycorrhizal. In addition, as a class of plant hormones, SLs control plant growth and development in flowering plants (angiosperms). Recent studies show that the ancestral function of SLs, which precede terrestrialization of plants, is as rhizosphere signaling molecules. SLs were then recruited as a class of plant hormones through the step-by-step acquisition of signaling components. The D14 gene encoding the SL receptor arose by gene duplication of KARRIKIN INSENSITIVE2 (KAI2), the receptor of karrikins and KAI2 ligand (KL), an unknown ligand, in the common ancestor of seed plants. KL signaling targets SMAX1, a repressor protein. On the other hand, the SL signaling targets SMXL78 subclade repressors, which arose by duplication of SMAX1 in angiosperms. Thus, gymnosperms contain the SL receptor D14 but not SMXL78, the SL signaling–specific repressor proteins. We studied two gymnosperm species, ginkgo (Ginkgo biloba) and Japanese umbrella pine (Sciadopitys verticillata), to clarify whether SLs are perceived and the signals are transduced in gymnosperms. We show that D14 and KAI2 of ginkgo and Japanese umbrella pine specifically perceive an SL analog and KL mimic, respectively. Furthermore, our results suggest that both SL signaling and KL signaling target SMAX1, and the specific localization of the receptor may result in the specificity of the signaling in gymnosperms."