Plant hormones (Literature sources on phytohormones and plant signalling)
20.4K views | +7 today
Follow
Plant hormones (Literature sources on phytohormones and plant signalling)
Your new post is loading...
Your new post is loading...
Scooped by Julio Retamales
Scoop.it!

Plant Quiescence Strategy and Seed Dormancy under Hypoxia - Review    

Plant Quiescence Strategy and Seed Dormancy under Hypoxia - Review     | Plant hormones (Literature sources on phytohormones and plant signalling) | Scoop.it

Authors: Chiara Pucciariello and Pierdomenico Perata.


Journal of Experimental Botany (2024)


Abstract: "Plant quiescence and seed dormancy can be triggered by reduced oxygen availability. Under water, oxygen depletion caused by flooding can culminate in a quiescent state, which is a plant strategy for energy preservation and survival. In adult plants, a quiescent state can be activated by sugar starvation, culminating in metabolic depression. In seeds, secondary dormancy can be activated by reduced oxygen availability, which creates an unfavourable state for germination. The physical dormancy of some seeds and buds includes barriers to external conditions, which indirectly results in hypoxia. The molecular processes that support seed dormancy and plant survival through quiescence under hypoxia include the N-degron pathway, which enables the modulation of ethylene responsive factors of group VII and downstream targets. This oxygen- and nitric oxide-dependent mechanism interacts with phytohormone-related pathways to control growth."

Julio Retamales's insight:
Good review!
No comment yet.
Scooped by Julio Retamales
Scoop.it!

Oxygen, a key signalling factor in the control of seed germination and dormancy - Review 

Oxygen, a key signalling factor in the control of seed germination and dormancy - Review  | Plant hormones (Literature sources on phytohormones and plant signalling) | Scoop.it

Author: Françoise Corbineau.


Seed Science Research (2023)


Abstract: "Oxygen is a major factor of seed germination since it allows resumption of respiration and subsequent metabolism reactivation during seed imbibition, thus leading to the production of reducing power and ATP. Most studies carried out in the 60s to 85s indicate that oxygen requirement depends on the species and is modulated by environmental factors. They have also demonstrated that the covering structures mainly inhibit germination by limiting oxygen supply to the embryo during imbibition through enzymatic oxidation of phenolic compounds by polyphenol oxidases (catechol oxidase and laccase) and peroxidases. Recent use of oxygen-sensitive microsensors has allowed to better characterize the oxygen diffusion in the seed and determine the oxygen content at the level of embryo below the covering structures. Here, I will also highlight the major data obtained over the last 30 years indicating the key role of oxygen in the molecular networks regulating seed germination and dormancy through (1) the hormonal balance (ethylene, ABA and GA), the hormone-signalling pathway and, in particular, the ABA sensitivity, (2) the emerging role of mitochondria in ROS production in hypoxia and (3) the involvement of the N-degron pathway in the turnover of proteins involved in seed tolerance to hypoxia."

Julio Retamales's insight:
Relevant review including valuable contributions of a leading researcher in the area. Highly recommended! 
No comment yet.
Scooped by Julio Retamales
Scoop.it!

Unraveling the genetic enigma of rice submergence tolerance: Shedding light on the role of ethylene response factor (ERF)-encoding gene SUB1A-1 - Review

Unraveling the genetic enigma of rice submergence tolerance: Shedding light on the role of ethylene response factor (ERF)-encoding gene SUB1A-1 - Review | Plant hormones (Literature sources on phytohormones and plant signalling) | Scoop.it
Authors: Md Ibrahim Khalil, Md Mahmudul Hassan, Swadesh Chandra Samanta, Abul Kashem Chowdhury, Md Zahid Hassan, Nasar Uddin Ahmed, Uzzal Somaddar, Sharmistha Ghosal, Arif Hasan Khan Robin, Ujjal Kumar Nath, Mohammad Golam Mostofa, David J. Burritt, Chien Van Ha, Aarti Gupta, Lam-Son Phan Tran and Gopal Saha.

Plant Physiology and Biochemistry (2024)

Highlights • Rice plants having SUB1A-1 endure submergence through a quiescence strategy. • SUB1A-1 mediates inhibition of levels and signaling of ethylene, gibberellin and auxin. • SUB1A-1 increases brassinosteroid biosynthesis and signaling, and JA responsiveness. • SUB1A-1 activates leaf gas film formation and reduces carbohydrate catabolism. • Submergence-tolerant wild rice genotypes lack SUB1A. 

Abstract: "The world's low-lying rice (Oryza sativa) cultivation areas have been suffering from the threats of submergence or flash flooding due to global warming. Rice plants manifest a variety of physiological and morphological changes to cope with hypoxia and underwater adversities, including lowering carbohydrate consumption, inhibiting shoot elongation, and forming thicker leaf gas film during submergence. Functional studies have revealed that submergence tolerance in rice is mainly determined by an ethylene response factor (ERF) transcription factor-encoding gene, namely SUBMERGENCE 1A-1 (SUB1A-1) located in the SUB1 quantitative trait locus. The SUB1A-1-dependent submergence tolerance is manifested through hormones such as ethylene, gibberellic acid, brassinosteroid, auxin and jasmonic acid. Considerable progress has been made toward the introduction of SUB1A-1 into rice varieties through a conventional marker-assisted backcrossing strategy. Here, we review the recent advances in the physiological, biochemical and molecular dynamics of rice submergence tolerance mediated by the ‘quiescence strategy’. Thus, the present review aims to provide researchers with insights into the genetics of rice submergence tolerance and future perspectives for designing submergence-resilient plants for sustainable agriculture under the uncertainties of climate change."
Julio Retamales's insight:
Relevant review!
No comment yet.