SARS-CoV-2Infection Induces DNA Damage, Through CHK1 Degradation and Impaired 53BP1 Recruitment, and Cellular Senescence -  Nature Cell Biology | Virus World | Scoop.it

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair.

 

Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs’ biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence. Gioia, Tavella et al. show that severe acute respiratory syndrome coronavirus 2 causes DNA damage through CHK1 degradation and impairs 53BP1 recruitment to DNA lesions. The induced DNA damage is associated with expression of pro-inflammatory cytokines and senescence markers. 

 

Published in Nature Cell Biology (March 9, 2023):

https://doi.org/10.1038/s41556-023-01096-x