Virus World
377.4K views | +74 today
Follow
Virus World
Virus World provides a daily blog of the latest news in the Virology field and the COVID-19 pandemic. News on new antiviral drugs, vaccines, diagnostic tests, viral outbreaks, novel viruses and milestone discoveries are curated by expert virologists. Highlighted news include trending and most cited scientific articles in these fields with links to the original publications. Stay up-to-date with the most exciting discoveries in the virus world and the last therapies for COVID-19 without spending hours browsing news and scientific publications. Additional comments by experts on the topics are available in Linkedin (https://www.linkedin.com/in/juanlama/detail/recent-activity/)
Curated by Juan Lama
Your new post is loading...
Scooped by Juan Lama
Scoop.it!

New Point-of-care Medical Device Rapidly and Accurately Detects Viruses

New Point-of-care Medical Device Rapidly and Accurately Detects Viruses | Virus World | Scoop.it

The gene-editing tool CRISPR has been heralded as a scientific miracle destined to eradicate diseases from sickle-cell anemia to cancer, or decried as "the genetic scissors that tailor the human gene pool," an ethically risky technology driving us toward a designer babies.  Case Western Reserve University researchers see a different opportunity in the CRISPR technique: A new "universal biosensing" point-of-care medical device--similar to the existing commercial blood-glucose sensor--that rapidly and accurately detects troublesome viruses like human papillomavirus (HPV) or parvovirus B19 (PB-19).

 

To do that, researchers converted the CRISPR "recognition induced enzymatic signal" to an electrical signal, which was then used to detect the biomarkers for those viruses. Dai is the lead author on a paper about the process which landed the cover story for Angewandte Chemie, a journal of the German Chemical Society.  Dai said existing tests for those viruses take three to five days for an accurate result and can be expensive, while the biosensor envisioned by Case Western Reserve researchers would provide accurate results in under an hour.

 

According to the U.S. Centers for Disease Control, HPV is a common virus that can lead to six types of cancers later in life. Nearly 80 million Americans are infected with some type of HPV, spread through intimate skin-to-skin contact. Parvovirus B19, or parvo, spreads through respiratory secretions, such as saliva or nasal mucus, when an infected person coughs or sneezes. The virus can present a range of symptoms, depending on a person's age and overall health. About two out of 10 people infected with this virus will have no symptoms. Others may have only a mild rash..... E-CRISPR is the name Dai and co-authors gives to what they call an "electrochemical platform" that relies on the precision of the CRISPR technique to identify and quantify viruses in the blood. What sounds complex is actually quite simple, Dai said, "The CRISPR technique works so that it cuts all of the nonspecified single-strand DNA around it once the target is recognized, so we program to electrochemically probe this activity," he said. "No virus--no cutting, it's that simple. And the opposite is true: If CRISPR starts to cut, we know the virus is present."

 

Published in the J. Angewandte Chemie (September 30, 2019).:

https://doi.org/10.1002/anie.201910772

 

No comment yet.
Scooped by Juan Lama
Scoop.it!

Virus may Jump Species through 'Rock-and-Roll' Motion with Receptors

Virus may Jump Species through 'Rock-and-Roll' Motion with Receptors | Virus World | Scoop.it

Like a janitor thumbing through a keychain to find just the right key to open a lock, the "rock-and-roll" motion of the canine parvovirus during the binding process may help explain how the virus can find the spot on a receptor to infect not just dogs, but multiple species, according to an international team of researchers. The model also could lead to a better understanding of how viruses enter a human body. The researchers, who report their findings today (Sept. 23) in the Proceedings of the National Academy of Sciences, used a sophisticated electron microscope that can take pictures of structures at the atomic level to examine the virus as it interacted with the transferrin receptor, or TfR, a protein on the surface of the cell that helps manage a body's iron uptake.

 

"The virus uses the same receptor in many different species of animals," said Susan Hafenstein, associate professor of biochemistry and molecular biology and an affiliate member of the Huck Institutes of Life Sciences. "All of these animals—including raccoon, mink, cats, dogs—have a transferrin receptor, and, as you can imagine, the receptor would be slightly different depending on the species. So how is a virus able to use the receptor from a fox and the same receptor from a wolf or a cat?" The key may be motion that is generated by the virus and receptor molecules when they interact. The study shows that when the molecules interact, they can sway, which allows the virus to roll around the receptor point-of-contact searching for the right place to bind, according to Hafenstein, who is also an associate of the Institute for CyberScience, which provides Penn State faculty access to supercomputer resources.

 

Once it binds, the virus hijacks the iron-uptake process that TfR regulates. "TfR's job is to bind iron-loaded transferrin," said Hafenstein. "So that when that iron-loaded transferrin binds to the receptor, it signals the receptor: 'OK. It's time to get into the cell.' At that point, the virus hitches a ride. For us, this was pretty exciting because it makes so much biological sense. If the virus binds naked TfR, it would just sit at the cell surface, but it prefers the TfR that's about to go in."

 

Understanding the virus's versatility of attacking the receptor gives scientists a new understanding of how the disease swept through animal and pet populations in the 1970s. "Working with our collaborators at Cornell, we were able to see that the virus only needs two mutations on the surface to be able to jump from cats to dogs," said Hafenstein. "It was thought that it jumped from cats to dogs in the late seventies, causing a pandemic. However, with more work, our collaborators discovered that it's more complicated than that. Likely, it jumped from cats to raccoons to dogs." Hafenstein added that scientists were particularly baffled at the evolution of canine parvovirus because it is a DNA-based virus. "DNA viruses are not very well known for being able to jump species," said Hafenstein. "They don't exist with a lot of mutations, like RNA viruses such as HIV, which is treated with a drug cocktail because the virus mutates so rapidly.".....

 

Published in P.N.A.S on Sept. 23, 2019:

https://doi.org/10.1073/pnas.1904918116

 

No comment yet.