Virus World
377.4K views | +62 today
Follow
Virus World
Virus World provides a daily blog of the latest news in the Virology field and the COVID-19 pandemic. News on new antiviral drugs, vaccines, diagnostic tests, viral outbreaks, novel viruses and milestone discoveries are curated by expert virologists. Highlighted news include trending and most cited scientific articles in these fields with links to the original publications. Stay up-to-date with the most exciting discoveries in the virus world and the last therapies for COVID-19 without spending hours browsing news and scientific publications. Additional comments by experts on the topics are available in Linkedin (https://www.linkedin.com/in/juanlama/detail/recent-activity/)
Curated by Juan Lama
Your new post is loading...
Scooped by Juan Lama
Scoop.it!

Junk DNA in Birds May Hold Key to Safe, Efficient Gene Therapy

Junk DNA in Birds May Hold Key to Safe, Efficient Gene Therapy | Virus World | Scoop.it

The recent approval of a CRISPR-Cas9 therapy for sickle cell disease demonstrates that gene editing tools can do a superb job of knocking out genes to cure hereditary disease. But it's still not possible to insert whole genes into the human genome to substitute for defective or deleterious genes. A new technique that employs a retrotransposon from birds to insert genes into the genome holds more promise for gene therapy, since it inserts genes into a "safe harbor" in the human genome where the insertion won't disrupt essential genes or lead to cancer. Retrotransposons, or retroelements, are pieces of DNA that, when transcribed to RNA, code for enzymes that copy RNA back into DNA in the genome—a self-serving cycle that clutters the genome with retrotransposon DNA. About 40% of the human genome is made up of this "selfish" new DNA, though most of the genes are disabled, so-called junk DNA. The new technique, called Precise RNA-mediated INsertion of Transgenes, or PRINT, leverages the ability of some retrotransposons to efficiently insert entire genes into the genome without affecting other genome functions. PRINT would complement the recognized ability of CRISPR-Cas technology to disable genes, make point mutations and insert short segments of DNA.

 

A description of PRINT, which was developed in the laboratory of Kathleen Collins, a professor of molecular and cell biology at the University of California, Berkeley, is published on Feb. 20 in the journal Nature Biotechnology. PRINT involves the insertion of new DNA into a cell using delivery methods similar to those used to ferry CRISPR-Cas9 into cells for genome editing. For PRINT, one piece of delivered RNA encodes a common retroelement protein called R2 protein, which has multiple active parts, including a nickase—an enzyme that binds and nicks double-stranded DNA—and reverse transcriptase, the enzyme that generates the DNA copy of RNA. The other RNA is the template for the transgene DNA to be inserted, plus gene expression control elements—an entire autonomous transgene cassette that R2 protein inserts into the genome, Collins said. A key advantage of using R2 protein is that it inserts the transgene into an area of the genome that contains hundreds of identical copies of the same gene—each coding for ribosomal RNA, the RNA machine that translates messenger RNA (mRNA) into protein. With so many redundant copies, when the insertion disrupts one or a few ribosomal RNA genes, the loss of the genes won't be missed. Putting the transgene into a safe harbor avoids a major problem encountered when inserting transgenes via a human virus vector, which is the common method today: The gene is often inserted randomly into the genome, disabling working genes or messing with the regulation or function of genes, potentially leading to cancer. "A CRISPR-Cas9-based approach can fix a mutant nucleotide or insert a little patch of DNA—sequence fixing. Or you can just knock out a gene function by site-specific mutagenesis," said Collins, who holds the Walter and Ruth Schubert Family Chair. "We're not knocking out a gene function. We're not fixing an endogenous gene mutation. We're taking a complementary approach, which is to put into the genome an autonomously expressed gene that makes an active protein—to add back a functional gene as a deficit bypass. It's transgene supplementation instead of mutation reversal. To fix loss-of-function diseases that arise from a panoply of individual mutations of the same gene, this is great."

 

'The real winners were from birds'

Many hereditary diseases, such as cystic fibrosis and hemophilia, are caused by a number of different mutations in the same gene, all of which disable the gene's function. Any CRISPR-Cas9-based gene editing therapy would have to be tailored to a person's specific mutation. Gene supplementation using PRINT could instead deliver the correct gene to every person with the disease, allowing each patient's body to make the normal protein, no matter what the original mutation. Many academic labs and startups are investigating the use of transposons and retrotransposons to insert genes for gene therapy. One popular retrotransposon under study by biotech companies is LINE-1 (Long INterspersed Element-1), which in humans has duplicated itself and some hitchhiker genes to cover about 30% of the genome, though fewer than 100 of our genome's LINE-1 retrotransposon copies are functional today, a miniscule fraction of the genome. Collins, along with UC Berkeley postdoctoral colleague Akanksha Thawani and Eva Nogales, UC Berkeley Distinguished Professor in the Department of Molecular and Cell Biology and a Howard Hughes Medical Institute investigator, published a cryoelectron microscopy structure of the enzyme protein encoded by the LINE-1 retroelement on Dec. 14 in the journal Nature. That study made it clear, Collins said, that the LINE-1 retrotransposon protein would be hard to engineer to safely and efficiently insert a transgene into the human genome. But previous research demonstrating that genes inserted into the repetitive, ribosomal RNA encoding region of the genome (the rDNA) get expressed normally suggested to Collins that a different retroelement, called R2, might work better for safe transgene insertion.

 

Because R2 is not found in humans, Collins and senior researcher Xiaozhu Zhang and postdoctoral fellow Briana Van Treeck, both from UC Berkeley, screened R2 from more than a score of animal genomes, from insects to the horseshoe crab and other multicellular eukaryotes, to find a version that was highly targeted to rDNA regions in the human genome and efficient at inserting long lengths of DNA into the region. "After chasing dozens of them, the real winners were from birds," Collins said, including the zebra finch and the white-throated sparrow. While mammals do not have R2 in their genomes, they do have the binding sites needed for R2 to effectively insert as a retroelement—likely a sign, she said, that the predecessors to mammals had an R2-like retroelement that somehow got kicked out of the mammalian genome. In experiments, Zhang and Van Treeck synthesized mRNA-encoding R2 protein and a template RNA that would generate a transgene with a fluorescent protein expressed by an RNA polymerase promoter. These were cotransfected into cultured human cells. About half the cells lit up green or red due to fluorescent protein expression under laser light, demonstrating that the R2 system had successfully inserted a working fluorescent protein into the genome. Further studies showed that the transgene did indeed insert into the rDNA regions of the genome and that about 10 copies of the RNA template could insert without disrupting the protein-manufacturing activity of the rDNA genes.

A giant ribosome biogenesis center

Inserting transgenes into rDNA regions of the genome is advantageous for reasons other than it gives them a safe harbor. The rDNA regions are found on the stubby arms of five separate chromosomes. All of these stubby arms huddle together to form a structure called the nucleolus, in which DNA is transcribed into ribosomal RNA, which then folds into the ribosomal machinery that makes proteins. Within the nucleolus, rDNA transcription is highly regulated, and the genes undergo quick repairs, since any rDNA breaks, if left to propagate, could shut down protein production. As a result, any transgene inserted into the rDNA region of the genome would be treated with kid gloves inside the nucleolus. "The nucleolus is a giant ribosome biogenesis center," Collins said. "But it's also a really privileged DNA repair environment with low oncogenic risk from gene insertion. It's brilliant that these successful retroelements—I'm anthropomorphizing them—have gone into the ribosomal DNA. It's multicopy, it's conserved, and it's a safe harbor in the sense that you can disrupt one of these copies and the cell doesn't care."

This makes the region an ideal place to insert a gene for human gene therapy. Collins admitted that a lot is still unknown about how R2 works and that questions remain about the biology of rDNA transcription: How many rDNA genes can be disrupted before the cell cares? Because some cells turn off many of the 400+ rDNA genes in the human genome, are these cells more susceptible to side effects of PRINT? She and her team are investigating these questions, but also tweaking the various proteins and RNAs involved in retroelement insertion to make PRINT work better in cultured cells and primary cells from human tissue. The bottom line, though, is that "it works," she said. "It's just that we have to understand a little bit more about the biology of our rDNA in order to really take advantage of it."

 

Published in Nature Biotechnology  (Dec. 20, 2023):

https://doi.org/10.1038/s41587-024-02137-y 

https://doi.org/10.1038/s41586-023-06933-5 

No comment yet.
Scooped by Juan Lama
Scoop.it!

Further Evidence Supports Controversial Claim that SARS-CoV-2 Genes Can Integrate with Human DNA

Further Evidence Supports Controversial Claim that SARS-CoV-2 Genes Can Integrate with Human DNA | Virus World | Scoop.it

After being challenged, research team provides more data to back its controversial hypothesis but the relevance to human health is unclear.  A team of prominent scientists has doubled down on its controversial hypothesis that genetic bits of the pandemic coronavirus can integrate into our chromosomes and stick around long after the infection is over. If they are right—skeptics have argued that their results are likely lab artifacts—the insertions could explain the rare finding that people can recover from COVID-19 but then test positive for SARS-CoV-2 again months later. Stem cell biologist Rudolf Jaenisch and gene regulation specialist Richard Young of the Massachusetts Institute of Technology, who led the work, triggered a Twitter storm in December 2020, when their team first presented the idea in a preprint on bioRxiv. The researchers emphasized that viral integration did not mean people who recovered from COVID-19 remain infectious. But critics charged them with stoking unfounded fears that COVID-19 vaccines based on messenger RNA (mRNA) might somehow alter human DNA. (Janesich and Young stress that their results, both original and new, in no way imply that those vaccines integrate their sequences into our DNA.)

 

Researchers also presented a brace of scientific criticisms, some of which the team addresses in a paper released online today by the Proceedings of the National Academy of Sciences (PNAS). “We now have unambiguous evidence that coronavirus sequences can integrate into the genome,” Jaenisch says. SARS-CoV-2, the virus that causes COVID-19, has genes composed of RNA, and Jaenisch, Young, and co-authors contend that on rare occasions an enzyme in human cells may copy the viral sequences into DNA and slip them into our chromosomes. The enzyme, reverse transcriptase, is encoded by LINE-1 elements, sequences that litter 17% of the human genome and represent artifacts of ancient infections by retroviruses. In their original preprint, the researchers presented test tube evidence that when human cells spiked with extra LINE-1 elements were infected with the coronavirus, DNA versions of SARS-CoV-2’s sequences nestled into the cells’ chromosomes. Many researchers who specialize in LINE-1 elements and other “retrotransposons” thought the data were too thin to support the claim. “If I would have had this data, I would have not submitted to any publication at that point,” says Cornell University’s Cedric Feschotte, who studies endogenous retrovirus chunks in the human genome. He and others also said they expected higher quality work coming from scientists of the caliber of Jaenisch and Young. In two subsequent studies, both posted on bioRxiv, critics presented evidence that the supposed chimeras of human and viral DNA traces are routinely created by the very technique the group used to scan for them in chromosomes. As one report concluded, the human-virus sequences “are more likely to be a methodological product, [sic] than the result of genuine reverse transcription, integration and expression.”

 

In their new paper, Jaenisch, Young, and colleagues acknowledge that the technique they used accidentally creates human-viral chimeras. “I think it’s a valid point,” Jaenisch says. He adds that when they first submitted the paper to a journal, they knew it needed stronger data, which they hoped to add during the review process. But the journal, like many, requires authors to immediately post all COVID-19 results to a preprint server. “I probably should have said screw you, I won’t put it on bioRxiv. It was a misjudgment,” Jaenisch says. In the new PNAS paper, the team provides evidence that artifacts alone can’t explain the detected levels of virus-human chimeric DNA. The scientists also show that portions of LINE-1 elements flank the integrated viral genetic sequence, further supporting their hypothesis. And they have collaborated with one of the original skeptics, Stephen Hughes of the National Cancer Institute, who suggested an experiment to clarify whether the integration was real or noise, based on the orientation of the integrated viral sequences relative to the human ones. The results support the original hypothesis, says Hughes, a co-author of the new paper. “That analysis has turned out to be important,” he says. “The integration data in cell culture is much more convincing than what was presented in the preprint, but it’s still not totally clean,” says Feschotte, who now calls Jaenisch’s and Young’s hypothesis “plausible.” (SARS-CoV-2, he notes, can also persist in a person for months without integrating its genes.) The real question is whether the cell culture data have any relevance to human health or diagnostics. “In the absence of evidence of integration in patients, the most I can take away from these data is that it is possible to detect SARS-CoV-2 RNA retroposition events in infected cell lines where L1 is overexpressed,” Feschotte says. “The clinical or biological significance of these observations, if any, is a matter of pure speculation at this point.”

 

Jaenisch’s and Young’s team do report hints of SARS-CoV-2 integration in tissue from living and autopsied COVID-19 patients. Specifically, the researchers found high levels of a type of RNA that is only produced by integrated viral DNA as the cell reads its sequence to make proteins. But, Young acknowledges, “We do not have direct evidence for that yet.” Harmit Malik, a specialist in ancient viruses in the human genome at the Fred Hutchinson Cancer Research Center, says it’s a “legitimate question” to ask why people who should have cleared the virus sometimes have positive polymerase chain Reaction tests for its sequences. But he also remains unconvinced that the explanation is integrated virus. “Under normal circumstances, there is so little reverse transcription machinery available” in human cells, Malik says. The controversy has grown decidedly more civil since December. Both Young and Jaenisch say they received more intense criticism for their preprint than any studies in their careers, in part because some researchers worried it played into the hands of vaccine skeptics spreading false claims about the newly authorized mRNA vaccines. “If there ever was a preprint that should be deleted, it is this one! It was irresponsible to even put it up as a preprint, considering the complete lack of relevant evidence. This is now being used by some to spread doubts about the new vaccines,” Marie-Louise Hammarskjöld, a microbiologist at the University of Virginia, posted in a comment on bioRxiv at the time. And what of the original journal submission? “They rejected it,” Jaenisch says.

 

Study Cited Published in P.N.A.S. (May 25, 2021):

 https://doi.org/10.1073/pnas.2105968118

No comment yet.
Scooped by Juan Lama
Scoop.it!

LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected cells - bioRxiv

LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected cells - bioRxiv | Virus World | Scoop.it

SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1,000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents).

 

In contrast, TagMap enriches for the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10 - 20-fold more sensitive per tested cell, TagMap can interrogate 1,000 - 2,000-fold more cells and therefore can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected in contrast to transfected cells may be facilitated because virus infection in contrast to viral RNA transfection results in significantly higher viral RNA levels and stimulates LINE1-expression which causes cellular stress.

 

Preprint available in bioRxiv (Feb. 13, 2023):

https://doi.org/10.1101/2023.02.10.527906 

No comment yet.