Virus World
377.4K views | +24 today
Follow
Virus World
Virus World provides a daily blog of the latest news in the Virology field and the COVID-19 pandemic. News on new antiviral drugs, vaccines, diagnostic tests, viral outbreaks, novel viruses and milestone discoveries are curated by expert virologists. Highlighted news include trending and most cited scientific articles in these fields with links to the original publications. Stay up-to-date with the most exciting discoveries in the virus world and the last therapies for COVID-19 without spending hours browsing news and scientific publications. Additional comments by experts on the topics are available in Linkedin (https://www.linkedin.com/in/juanlama/detail/recent-activity/)
Curated by Juan Lama
Your new post is loading...
Scooped by Juan Lama
Scoop.it!

Why Do some COVID-19 Patients Infect Many Others, Whereas Most Don’t Spread the Virus at All?

Why Do some COVID-19 Patients Infect Many Others, Whereas Most Don’t Spread the Virus at All? | Virus World | Scoop.it

Preventing big clusters of cases would help curb the pandemic, scientists say. When 61 people met for a choir practice in a church in Mount Vernon, Washington, on 10 March, everything seemed normal. For 2.5 hours the chorists sang, snacked on cookies and oranges, and sang some more. But one of them had been suffering for 3 days from what felt like a cold—and turned out to be COVID-19. In the following weeks, 53 choir members got sick, three were hospitalized, and two died, according to a 12 May report by the U.S. Centers for Disease Control and Prevention (CDC) that meticulously reconstructed the tragedy.

 

Many similar “superspreading events” have occurred in the COVID-19 pandemic. A database by Gwenan Knight and colleagues at the London School of Hygiene & Tropical Medicine (LSHTM) lists an outbreak in a dormitory for migrant workers in Singapore linked to almost 800 cases; 80 infections tied to live music venues in Osaka, Japan; and a cluster of 65 cases resulting from Zumba classes in South Korea. Clusters have also occurred aboard ships and at nursing homes, meatpacking plants, ski resorts, churches, restaurants, hospitals, and prisons. Sometimes a single person infects dozens of people, whereas other clusters unfold across several generations of spread, in multiple venues. Other infectious diseases also spread in clusters, and with close to 5 million reported COVID-19 cases worldwide, some big outbreaks were to be expected. But SARS-CoV-2, like two of its cousins, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), seems especially prone to attacking groups of tightly connected people while sparing others. It’s an encouraging finding, scientists say, because it suggests that restricting gatherings where superspreading is likely to occur will have a major impact on transmission, and that other restrictions—on outdoor activity, for example—might be eased....

 

That’s why in addition to R, scientists use a value called the dispersion factor (k), which describes how much a disease clusters. The lower k is, the more transmission comes from a small number of people. In a seminal 2005 Nature paper, Lloyd-Smith and co-authors estimated that SARS—in which superspreading played a major role—had a k of 0.16. The estimated k for MERS, which emerged in 2012, is about 0.25. In the flu pandemic of 1918, in contrast, the value was about one, indicating that clusters played less of a role.

No comment yet.
Scooped by Juan Lama
Scoop.it!

Cross-Neutralization of SARS-CoV-2 by a Human Monoclonal SARS-CoV Antibody

Cross-Neutralization of SARS-CoV-2 by a Human Monoclonal SARS-CoV Antibody | Virus World | Scoop.it

SARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 202o. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies.

 

Here we describe multiple monoclonal antibodies targeting SARS-CoV-2 S identified from memory B cells of an individual who was infected with SARS-CoV in 2003. One antibody, named S309, potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 by engaging the S receptor-binding domain. Using cryo-electron microscopy and binding assays, we show that S309 recognizes a glycan-containing epitope that is conserved within the sarbecovirus subgenus, without competing with receptor attachment.

 

Antibody cocktails including S309 along with other antibodies identified here further enhanced SARS-CoV-2 neutralization and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309- and S309-containing antibody cocktails for prophylaxis in individuals at high risk of exposure or as a post-exposure therapy to limit or treat severe disease.

 

Published in Nature (May 18, 2020): 

https://doi.org/10.1038/s41586-020-2349-y

No comment yet.