Anticipatory Immunity - Skin nerves can detect pathogens and activate an immune response against infection  | Virus World | Scoop.it

Mouse study reveals pain-sensing neurons also help fight skin infections and help prevent its spread. The findings suggest a new type of immunity. 

 

“These pain-sensing nerves can detect pathogens, and for the first time, we’ve shown that they activate an immune response and also signal protective immunity in sites adjacent to the infection,” said Daniel Kaplan, M.D., Ph.D., professor of dermatology and immunology at Pitt’s School of Medicine and the senior author of the study. “This demonstrates that the immune and nervous systems work synergistically for host defense. These findings also could have important implications for developing more specific therapies for autoimmune skin diseases like psoriasis.” 

 

Until about a decade ago, pain was thought to have evolved as a way for your body to tell you to stay away from a particular stimulus or to signal a problem with its function, like an injury. More recently, however, researchers have shown that it may play an important role in immunity against some pathogens.

In the study, Kaplan and first author Jonathan Cohen, an M.D./Ph.D. student in Kaplan’s lab, collaborated with Pitt neurobiology professors and pain experts Kathy Albers, Ph.D., and Brian Davis, Ph.D., to develop an optogenetic mouse model where pain-sensing neurons in the skin could be activated by shining blue light. They first showed that just activating these neurons released a small protein called CGRP, which recruited different types of immune cells to the site. This suggested that neurons detecting skin pathogens on their own kickstart an immune response even before sentry immune cells could.

 

Then in the same mouse model, they infected the animals with either Candida albicans, a fungus that causes candidiasis, commonly known as thrush, or Staphylococcs aureus, a common bacterium that can turn deadly under certain conditions. Using optogenetics and chemical nerve blockers, the researchers showed through a series of elegant experiments that when the fungus infected the skin at one location, the nerves not only detected and initiated an immune response to fight the infection, but also sent a signal toward the spinal cord. Those signals then boomeranged back to skin at areas around the infection to activate immune defenses in anticipation, thereby preventing the infection from spreading. The researchers called this new nerve-driven protective mechanism “anticipatory immunity.” 

 

“The advantage of involving the nervous system is that it can communicate information across a space in a span of milliseconds, compared to hours or days for the immune cells to do the same function,” said Jonathan Cohen, an M.D./Ph.D. student in Kaplan’s lab and the first author of the study.

 

Published on July 25 in the journal Cell:

https://doi.org/10.1016/j.cell.2019.06.022